Interior-point Methods for Nonconvex Nonlinear Programming: Primal-dual Methods and Cubic Regularization
نویسندگان
چکیده
In this paper, we present a primal-dual interior-point method for solving nonlinear programming problems. It employs a Levenberg-Marquardt (LM) perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the LM perturbation is equivalent to replacing the Newton step by a cubic regularization step with an appropriately chosen regularization parameter. This equivalence allows us to use the favorable theoretical results of [15], [19], [5], and [6], but its application at every iteration of the algorithm, as proposed by these papers, is computationally expensive. We propose a hybrid method: use a Newton direction with a line search on iterations with positive definite Hessians and a cubic step, found using a sufficiently large LM perturbation to guarantee a steplength of 1 otherwise. Numerical results are provided on a large library of problems to illustrate the robustness and efficiency of the proposed approach on both unconstrained and constrained problems. This paper extends our previous work [2] from purely primal barrier methods to the primal-dual interior-point method framework.
منابع مشابه
Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts
In this paper, we investigate the use of an exact primal-dual penalty approach within the framework of an interior-point method for nonconvex nonlinear programming. This approach provides regularization and relaxation, which can aid in solving ill-behaved problems and in warmstarting the algorithm. We present details of our implementation within the loqo algorithm and provide extensive numerica...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملA Primal-Dual Exterior Point Method for Nonlinear Optimization
In this paper, primal-dual methods for general nonconvex nonlinear optimization problems are considered. The proposed methods are exterior point type methods that permit primal variables to violate inequality constraints during the iterations. The methods are based on the exact penalty type transformation of inequality constraints and use a smooth approximation of the problem to form primal-dua...
متن کاملInterior-point methods for nonconvex nonlinear programming: orderings and higher-order methods
The paper extends prior work by the authors on LOQO, an interior point algorithm for nonconvex nonlinear programming. The specific topics covered include primal versus dual orderings and higher order methods, which attempt to use each factorization of the Hessian matrix more than once to improve computational efficiency. Results show that unlike linear and convex quadratic programming, higher o...
متن کامل